Jaraktitik A ke 5 cm rusuk HG adalah panjang ruas garis D C 5 cm AH, (AH ď ž HG) A B AH = a 2 (AH diagonal sisi) AH = 5 2 Jadi jarak A ke HG = 5√2 cm 10 Olehkarena ruas garis AG merupakan diagonal ruang kubus maka panjang AG. Karona ruas garis AH tegak lurus dengan rusuk AB. 3 maka gambarkanlah letak titik P. AB AH HB AB 8 cm 6 cm AB 14 cm. Hitunglah jarak titik A ke ruas garis TC. Diketahui sebuah ruas garis AB dengan panjang 9 cm. 3 AB 4 cm BP 4 cm AB 4 cm AP 8 cm 02. Jawabanyang benar - Diketahui panjang ruas garis AB adalah 9 cm. Diketahui panjang ruas garis AB adalah 12 cm. 1 cAPPB 2. X dan z sisi sejajar trapesium dengan panjang x z. Bagilah ruas garis AB di bawah ini menjadi 2bagian denagn perbandingan 1. Garis merupakan suatu himpunan titik dengan kata lain suatu garis penuh dengan titik. rumahPak Jojon adalah p = 3 × 3 = 9 m = 900 cm dan l = 2 × 3 = 6 m = 600 cm. Berdasarkan denah di atas, panjang dan lebar dari kamar tidur 1 secara berturut-turut adalah 24 - 12 = 12 cm dan 14 cm. Karena denah rumah dan rumah sebenarnya sebangun maka, Sehingga diperoleh panjang dan lebar sebenarnya dari kamar tidur 1 secara berturut-turut 12 cm ⁡ =12\\operatorname{cm} = 12 cm *Kita ketahui bahwa OC adalah setengah dari AC sehingga : O C = 1 2 A C OC=\\frac{1}{2}AC OC = 2 1 A C = 1 2. 12 =\\frac{1}{2}.12 = 2 1 .12 = 6 cm ⁡ =6\\operatorname{cm} = 6 cm *Lalu perhatikan segitiga TOC Berikut ! kita akan mencari panjang TO dengan menggunakan teorema phytagoras. T O = T C 2 − O 12SMA Matematika GEOMETRI Pada kubus ABCD.EFGH, panjang rusuk AB = 12 cm. M adalah titik potong diagonal AC dan BD. Tentukan jarak titik E ke garis GM. Jarak Titik ke Garis Dimensi Tiga GEOMETRI Matematika Rekomendasi video solusi lainnya 02:45 Diketahui kubus ABCD EFGH dengan panjang rusuk 8 cm. Jara 02:02 3 Diketahui limas beraturan T.ABC dengan bidang alas berbentuk segitiga sama sisi. TA tegak lurus dengan bidang alas. Jika panjang =4√2cm dan =4cm, Tentukan jarak antara titik T dan C. 4. Perhatikan bangun berikut ini. Jika diketahui panjang =5 cm, = = =4 cm, maka tentukan : a) Jarak antara titik A dan C X07Cn. Kelas 12 SMADimensi TigaJarak Titik ke GarisKubus mempunyai panjang rusuk 12 cm. Titik T merupakan perpotongan antara diagonal EG dan FH. Jarak titik A garis ke ruas CT adalah....Jarak Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...0348Diketahui kubus dengan panjang rusuk 6 cm. Jara...Teks videoDisini Diketahui sebuah kubus memiliki panjang rusuk yaitu 12 cm. Adapun titik t di sini adalah perpotongan diagonal EG dan FH akan dicari jarak dari titik A ke ruas garis CT nah disini kita akan menarik garis yang tegak lurus yang menghubungkan antara titik dengan ruas garis tersebut maka kita bisa makan di sini titik O di mana tegak lurus nya di titik tersebut Nah untuk memudahkan perhitungan kita akan menggunakan segitiga ACD kita bisa gambarkan seperti ini disini tegak lurus begitupun untuk titik c di sini. Nah. Adapun panjang AC di sini merupakan diagonal sisi berarti kita tinggal menghitung akar 2 di mana A itu adalah panjang rusuknya yaitu 12 detikjadi 12 √ 2 cm, kemudian panjang BC itu adalah rusuknya yaitu 12 cm dan panjang AG yaitu diagonal ruang berarti kita tinggal menggunakan rumus a √ 3 sehingga diperoleh panjang AB adalah 12 akar 3 cm kita akan mencari a di sini panjang ao kita bisa makan ini panjangnya adalah x yaitu panjang ao kemudian panjang Oge yaitu 12 akar 3 dikurang X kita bisa menuliskan disini untuk mencari panjang aku yaitu menggunakan persamaan rumus phytagoras yaitu antara segitiga aod dengan segitiga BOC kita bisa Tuliskan di sini ya itu untuk panjang daripada OC kuadrat ini sama saja dengandari AC kuadrat dikurang a o kuadrat = BC kuadrat dikurang kuadrat kita bisa ganti sinyal di sini yaitu 12 akar 2 kuadrat kemudian itu adalah x kuadrat kemudian GC di sini 12 dikurang 12 akar 3 dikurang x pangkat 2 ini diperoleh 144 dikali 2 dikurang x kuadrat = 144 dikurang 144 dikali 3 dikurang 24 akar 3 x + x kuadrat Adapun x kuadrat nya disini kita bisa coret karena bernilai nol sehingga288 = 144 dikurang 144 x 3 yaitu = 4 3 2 di sini ditambah 24 akar 3 x diperoleh 24 akar 3 x 1 = 288 dikurang 144 ditambah 432 yaitu nilainya sama dengan 576 kita dapatkan X itu sama dengan 57 per 24 akar 3 atau sama dengan di sini 24 per akar 3 ketika kita rasionalkan yaitu dengan mengalikan akar 3 dengan per akar 3 maka diperoleh 24 per 3 akar 3 = 8 akar3 maka panjang X disini tidak lain adalah panjang daripada ao sehingga kita bisa menyimpulkan bahwa jarak dari titik A ke ruas garis CT yaitu sebesar a o itu 8 √ 3 cm atau pada optik yang benar itu adalah opti De sekian sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Selasa, 22 Desember 2020 Edit Berikut ini adalah pembahasan dan Kunci Jawaban Matematika Kelas 7 Semester 2 Halaman 129 - 131 Bab 7 Garis dan Sudut Ayo Kita berlatih Hal 129 - 131 Nomor 1 - 9. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 7 di semester 2 halaman 129 - 131. Semoga dengan adanya pembahasan serta kunci jawaban ini adik-adik kelas 7 dapat menyelesaikan tugas Garis dan Sudut Matematika Kelas 7 Semester 2 Halaman 129 - 131 yang diberikan oleh bapak ibu/guru. Kunci Jawaban Matematika Kelas 7 Halaman 129 - 131 Ayo Kita Berlatih 1. Salinlah dua garis berikut. Kemudian dengan menggunakan jangka dan penggaris bagilah masing-masing garis menjadi 7 bagian yang sama panjang. Jawaban Langkahnya,1. Ukur panjang garis dengan penggaris2. Bagi hasil pengukuran dengan 73. Rentangkan jangka selebar hasil pengukuran4. Letakkan jarum jangka ke pada ujung garis5. Buat penanda dengan jangka pada garis6. Ulangi cara ke 5 pada penanda yang baru 2. Salinlah dua garis berikut. Kemudian bagilah masing-masing garis dengan perbandingan 2 3. Jawaban Langkahnya, 1. Ukur panjang garis dengan penggaris 2. Bagi hasil pengukuran dengan 5 3. Rentangkan jangka selebar 2 x hasil pengukuran 4. Letakkan jarum jangka ke pada ujung garis 5. Buat penanda dengan jangka pada garis 3. Diketahui panjang ruas garis AB adalah 12 cm. Bagilah ruas garis AB tersebut menjadi 5 bagian sama panjang. Jawaban Langkahnya, 1. Bagi 12 dengan 5 2. Rentangkan jangka selebar hasil bagi3. Letakkan jarum jangka ke pada ujung garis 4. Buat penanda dengan jangka pada garis 5. Ulangi cara ke 4 pada penanda yang baru 4. Perhatikan gambar berikut. Tentukan nilai p. Jawaban AD / CD = BE / CE3 / 9 = p / 12p = 12 x 3 / 9p = 4 cmJadi, nilai p adalah 4 cm. 5. Perhatikan gambar berikut. Tentukan nilai x. Jawaban 3 / 6 = x / 4 + 6x = 10 x 3 / 6x = 5Jadi, nilai x adalah 5 cm. 6. Perhatikan gambar berikut Tentukan nilai x dan y. Jawaban AD / BD = AE / CE6 / 4 = x / 2x = 6 x 2 / 4x = 3 cmDE / AD = BC / AD + BDy / 6 = 10 / 6 + 4y = 1 x 6y = 6 cmJadi, nilai x = 3 cm dan y = 6 cm. 7. Perhatikan gambar berikut Tentukan panjang AB. Jawaban EF = CD x AE + AB x DE / AE + DE9,8 = 8 x 7 + AB x 3 / 7 + 39,8 = 56 + 3AB / 1098 = 56 + 3AB3AB = 98 - 56AB = 42 / 3AB = 14 cmJadi, panjang AB adalah 14 cm. 8. Diketahui titik E, F, dan G pada trapesium ABCD. Sisi FE sejajar dengan sisi AB. Jika AB = 7, DC = 14, DG = 8, FG = 4, GB = x , dan GE = y , maka nilai x + y adalah Jawaban FG / AB = DG / BD4 / 7 = 8 / 8 + x4 x 8 + x = 8 x 732 + 4x = 564x = 56 - 32x = 24 / 4x = 6EG / CD = BG / BDy / 14 = x / x + 8y / 14 = 6 / 6 + 8y = 6 / 14 x 14y = 6x + y = 6 + 6 = 12Jadi, nilai x + y adalah 12. 9. Perhatikan gambar berikut. Diketahui Trapesium ABCD, dengan AB//DC//PQ. Jika perbandingan AQ QC = BP PD = 3 2. Jawaban AB / x = BD / PD 10 / x = 2 + 3 / 2 5x = 20 x = 4 cmDC / PQ + x = AC / AQ 20 / PQ + 4 = 3 + 2 / 3 PQ + 4 = 60/5 PQ = 8 cmJadi, panjang ruas garis PQ adalah 8 cm. MatematikaGEOMETRI Kelas 7 SMPSUDUT DAN GARIS SEJAJARMembagi GarisDiketahui panjang ruas garis AB adalah 12 cm. Bagilah ruas garis AB tersebut menjadi 5 bagian sama panjangMembagi GarisSUDUT DAN GARIS SEJAJARGEOMETRIMatematikaRekomendasi video solusi lainnya0233Perhatikan gambar x pada gambar di atas a...0115Perhatikan gambar B CBanyak ruas garis berbeda ...0318Perhatikan gambar di panjang CD=15 cm, AD=...Teks videoHalo keren di sini kita punya soal tentang garis diketahui panjang ruas garis AB adalah 12 cm. Bagilah ruas garis AB tersebut menjadi 5 bagian sama panjang tidak bisa kan saya punya garis seperti ini kita punya garis AB nah disini panjang garis AB adalah 12 cm. Nah kita dapat dibagi untuk garis AB ini menjadi 5 bagian yang sama panjang pita yang pertama kali ini yang ke-2 alinea ke-3 alinea ke-4 sekaligus yang ke-5 dan kita misalkan masing-masing bagian itu panjangnya adalah l s = 12 cm yang kita beli dengan 5 berarti ini = 2,4 cm berarti di sini perhatikan bahwa masing-masing bagian ini panjangnya adalah 2,4 cm, maka disini kita mendapati ada 5 bagian dari garis AB yang telah kita potong yang jadi kita berhasil membagi garis AB ini menjadi 5 bagian yang sama panjang sampai jumpa di soal berikutnya Di dalam artikel ini terdapat 5 contoh soal matematika SMP dalam bentuk pilihan ganda tentang materi perbandingan segmen atau ruas garis beserta dibawah ini sudah dibuat berdasarkan materi yang terdapat dalam buku paket matematika SMP kelas 7 kurikulum 2013 revisi adalah Soal 1Diketahui gambar sebagai berikut. Jika garis DE//CB, maka nilai x pada gambar diatas adalah………A. 10 cmB. 14 cmC. 18 cmD. 20 cmPembahasanKita bisa menentukan nilai x pada gambar di atas menggunakan perbandingan ruas bahwa gambar diatas bukanlah sebuah segitiga siku-siku. Walaupun kayaknya sudut C berbentuk siku-siku. Hal ini dikarenakan tidak ada informasi mengenai sudut siku-siku pada gambar di atas. Jadi jangan cari nilai x menggunakan teorema Pythagoras diatas merupakan gambar yang berkaitan dengan cara membagi garis menjadi beberapa gambar tersebut ada beberapa perbandingan yang bisa 1AE EB = AD DCAtauBE EA = CD DAPerbandingan 2AE AB = AD ACAtauBE BA = CD CAPerbandingan 3AE AB = ED BCAtauAD AC = ED BCUntuk mencari nilai x pada gambar di atas kita bisa menggunakan salah satu dari perbandingan yang kita gunakan adalahAE EB = AD DCSelanjutnya tinggal memasukkan nilai-nilai yang diketahui. Tanda bagi bisa kita ubah menjadi tanda per = AD/DCx/5 cm = 12 cm/3 cm kali silang3x = 5 x 12x = 60/3 = 20 cmJadi nilai x pada gambar diatas adalah 20 Jawaban DContoh Soal 2Perhatikan gambar dibawah ini. Jika panjang PT = 5 cm, TQ = 15 cm, PS = 7 cm, maka panjang SR adalah………A. 21 cmB. 22 cmC. 23 cmD. 24 cmPembahasanUntuk mencari panjang SR kita masih menggunakan perbandingan yang sama seperti pada soal nomor tersebut adalahPT TQ = PS SRPT/TQ = PS/SR5 cm/15 cm = 7 cm/SR5SR = 7 x 15SR = 7 x 15/5SR = 21 cmKunci Jawaban ANah, mudah kan. Semoga kamu dapat memahami bagaimana menggunakan perbandingan 1 untuk menjawab soal-soal tipe seperti Soal 3 Pada gambar diatas garis NO//ML dan panjang KN = 12 cm, OL = 12 cm dan KL = 26 cm. Maka panjang KM adalah……..A. 18 cmB. 19 cmC. 20 cmD. 21 cmPembahasanPerbandingan yang kita gunakan untuk mencari panjang KM adalah perbandingan dua yaituKN KM = KO KLPanjang KO belum diketahui. Panjang KO dapat dicari dengan caraKO = KL - OLKO = 28 cm - 12 cm = 16 cmMakaKN/KM = KO/KL12 cm/KM = 16 cm/28 cm16KM = 12 cm x 28 cmKM = 12 x 28/16KM = 21 cmKunci Jawaban DCatatanKamu juga bisa menggunakan perbandingan 1 untuk menjawab soal ini yaitu dengan mencari panjang NM terlebih dahulu dari perbandingan berikutKN/NM = KO/KLSetelah mendapatkan panjang NM, panjang KM adalahKM = KN + NMHasil yang kamu dapatkan akan sama Soal 4Diketahui EI = 10 cm, EH = 8 cm, HG = 12 cm dan GF = 20 cm. Nilai x dan y pada gambar diatas berturut-turut adalah……..A. 10 cm dan 8 cmB. 15 cm dan 8 cmC. 10 cm dan 15 cmD. 12 cm dan 15 cmPembahasanNilai x pada gambar di atas dapat dicari menggunakan perbandingan 1. Sedangkan nilai y dapat dicari dengan menggunakan perbandingan nilai x menggunakan perbandingan 1Perbandingan tersebut adalahEI IF = EH HGEI/IF = EH/HG10 cm/x cm = 8 cm/12 cmx = 10 x 12/8 x = 15 cmMencari nilai x menggunakan perbandingan 3Perbandingan yang dimaksud adalahEI EF = HI GFPanjang EF = 10 cm + 15 cm = 25 cmEI EF = HI GFEI/EF = HI/GF10 cm/25 cm = y cm/20 cmy = 20 x 10/25y = 8 cmAtau boleh juga menggunakan perbandinganEH EG = HI GF8 cm/12 + 8 cm = y cm/20 cm8 cm/20 cm = y cm/20 cmy = 8 cmKunci Jawaban BContoh Soal 5Diketahui gambar trapesium sebagai berikut. Garis KJ, LM dan HI pada gambar di atas adalah sejajar. Jika panjang KJ = 20 cm, KL = 10 cm, LH = 14 cm dan panjang HI = 38 cm, maka panjang LM adalah……A. 27,5 cmB. 26,5 cmC. 25,5 cmD. 24,5 cmPembahasanKali ini gambar yang diketahui tidak berbentuk segitiga melainkan berbentuk trapesium. Agar dapat mengetahui berapa panjang garis LM, kita harus membagi dua gambar tersebut menjadi sebuah jajargenjang dan segitiga seperti yang ditunjukkan oleh gambar dibawah jajar genjang KHPJ pada gambar tersebut. Karena berbentuk jajargenjang makaPanjang KH = JP = 10 cm + 14 cm = 24 cmPanjang KJ = HP = LO = 20 cmNah, garis LM = LO + OM. Karena panjang garis LO sudah kita dapatkan, kita tinggal Mencari panjang garis OM menggunakan rumus perbandingan ruas yang kita gunakan adalah perbandingan tiga yaitu sebagai berikutJO JP = OM PIPanjang JP = KH = 24 cmPanjang JO = KL = 10 cmPanjang PI = HI - HP = 38 cm - 20 cm = 18 cmJO JP = OM PI10/24 = OM/18OM = 10 x 18/24OM = 7,5 cmNah, artinya panjang garis LM= LO + OM= 20 cm + 7,5 cm= 27,5 cmKunci Jawaban AContoh Soal 6Perhatikan gambar dibawah ini! Jika garis BG // CF // DE, maka perbandingan segmen garis dibawah ini yang tidak senilai adalah……….A. AG GF = AB BCB. AF FE = AC ADC. AB BD BG DED. CF DE = AF AEPembahasan Karena ada tiga buah garis sejajar pada gambar diatas, maka terdapat banyak sekali perbandingan segemen garis yang senilai. Oleh karena itu, ada baiknya kita cek opsi jawabannya terlebih jawaban A = benarAG GF = AB BCOpsi jawaban B = benarAF FE = AC ADOpsi jawaban C = salahAB BD tidak senilai dengan BG DE. Yang senilai dengan BG DE adalah AB AD atau AG AEOpsi jawaban D = benarCF DE = AF AEKunci Jawaban CContoh Soal 7Berdasarkan gambar dibawah ini, jika garis QT //RS dan perbandingan PQ QR = 3 4, maka perbandingan dibawah ini yang nilainya juga 3 4 adalah……..A. PT TSB. PT “ PSC. PQ PR D. QT PQPembahasan Berdasarkan gambar diatas, perbandingan yang senilai dengan PQ QR hanya ada satu yaitu PT TS. BerartiPQ QR = PT TS = 3 4Kunci Jawaban AData pada gambar dibawah ini digunakan untuk menjawab soal nomor 8 dan gambar berikutContoh Soal 8Panjang MQ = ……..?A. 10 cmB. 15 cmC. 18 cmD. 21 cmPembahasanUntuk mencari panjang MQ , perbandingan yang akan kita gunakan adalahKR KQ = LR MQ8 cm/14 cm = 12 cm/MQ4/7 = 12/MQMQ = 12 x 7/4 MQ = 21 cmKunci Jawaban DContoh Soal 9Panjang KP = ……?A. 12 cmB. 18 cmC. 22 cmD. 28 cmUntuk mencari panjang KP, sepertinya kita harus cari panjang PQ terlebih dahulu. Namun ternyata ada cara yang jauh lebih mudah loh. Kita pada soal sebelumnya kan sudah memperoleh berapa panjang MQ. Maka untuk mencari panjang KP, kita gunakan saja perbandingan berikutKQ KP = MQ NP8 cm + 6 cm/KP = 21 cm/27 cm14 cm/KP = 21/27KP = 27 x 14/21KP = 18 cmKunci Jawaban BNah itulah 5 buah contoh soal matematika SMP dalam bentuk pilihan ganda untuk materi perbandingan segmen atau ruas garis beserta pembahasannya yang dapat diberikan pada artikel kali soal-soal dan pembahasan diatas dapat bermanfaat bagi kamu sudah berkunjung ke blog kalian ingin mengerti kesalahan yang terdapat pada soal-soal maupun pembahasan diatas dapat menulisnya pada kolom komentar dibawah link untuk contoh soal lain dalam bab garis dan sudut. Diketahui kubus dengan panjang rusuk 12 cm. Jarak ruas garis HD dan EG adalah …. A. 6 cm B. 6√2 cm C. 6√3 cm D. 8 cm E. 8√2 cm Pembahasan Jarak ruas garis HD dan EG merupakan ½ garis HF. Perhatikan ilustrasi gambar berikut Jadi jarak ruas garis HD dan EG adalah 6√2 cm. Jawaban B - Jangan lupa komentar & sarannya Email nanangnurulhidayat

diketahui panjang ruas garis ab adalah 12 cm